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Abstract

The COVID-19 presented macroeconomic models with unique challenges, marked
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ing outliers are presented to address large jumps. Empirical findings demonstrate
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uniform-mixture approach is found to be more robust than the student-t models, as
it targets extreme variations without disrupting the smoothness of the stochastic
volatility process. Overall, this paper enhances macroeconomic modeling by ex-
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into economic dynamics during and after major crises like the COVID-19 pandemic.
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at Paris School of Economics - École d’Économie de Paris during my time at PSE. The views expressed
in this paper are those of the author and do not necessarily represent the views of the Bank of England
or its committees.

�Bank of England, Threadneedle street, London EC2R 8AH, United Kingdom.
Email: simon.hong@bankofengland.co.uk

mailto:simon.hong@bankofengland.co.uk


1 Introduction

The COVID-19 pandemic, with its widespread lockdowns and social distancing measures,

presented macroeconomic models with an array of unique challenges. Economic indicators

reached unprecedented levels during this period; for instance, in the week ending March

21, 2020, a staggering 3.28 million Americans filed for unemployment claims, surpassing

the previous record set during the 1982 recession. The U.S. real GDP plummeted by

a staggering 31.4% during the second quarter of 2020, marking an all-time low since

the Bureau of Economic Analysis (BEA) began tracking these figures in 1947.1 Such

extreme observations left the New York Federal Reserve’s benchmark nowcasting model

in disarray, as this constant-parameter model resulted in implausible forecast paths.

Although the economic turbulence witnessed during the COVID-19 pandemic was

unparalleled, the presence of outliers within macroeconomic data is a phenomenon with

historical antecedents. It is, in fact, a recurring feature within the macroeconomic data

landscape, as a manifestation of exceptional events such as labor strikes and natural

disasters. Illustratively, Figure 1 portrays selected macroeconomic indicators from the

French context spanning the period of 1980 to 2019. A cursory examination of this figure

underscores the omnipresence of conspicuous, one-off outliers across four series. It is worth

noting that the early contributions in the field of macroeconomic forecasting, including

Stock and Watson (2002), recognized this phenomenon and proposed the screening of

outliers via replacement with missing values.2

This paper extends the dynamic factor models (DFMs) paradigm by introducing ex-

plicit modeling of outliers, moving beyond data screening practices. Within the DFM

framework, I take the view that outliers primarily represent transient spikes in volatility,

not permanent disturbances. The model specification comfortably accommodates con-

ventional models while providing a more intuitive way of dealing with outliers: I introduce

and compare two distinct modeling strategies to address large jumps. Importantly, the

estimation process is entirely data-driven, allowing the model to estimate outliers based

solely on the data without prior constraints.

Subsequently, I take on the role of policymakers and market participants to conduct

1The figures are based on preliminary estimates: the FRED database now shows 2.91 million and
28% for initial claims and real GDP growth, respectively, after data revisions.

2Stock and Watson (2002) replaced observations exceeding 10 times the interquartile range from the
median by missing values.
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Figure 1: Existence of one-off outliers in French data
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Note: This figure plots four monthly indicators for the French economy: passenger car registrations,
unemployment, building permits, and industrial production: construction index. Sample: 1980.1 –
2019.12. The data are transformed in terms of month-on-month % changes. OECD recessions in gray.
Source: DBnomics.

pseudo real-time out-of-sample forecasting analyses, comparing performance of the model

to the benchmark for both pre- and post-COVID periods.3 In the context of nowcasting

French GDP, I show that the explicit modeling of outliers is particularly beneficial during

crises, as shown in Figure 2: while the benchmark model tends to underestimate the

severity of recession and overestimate economic dynamics during normal times, the model

with outliers adeptly captures economic activity in a more timely manner. As a result, the

forecasting accuracy improves by 44% compared to the benchmark even when post-2020

samples are included, and the outlier-augmented models accurately capture the actual

GDP growth in the second and third quarters of 2020.

I also explore further refinement of these models that can anticipate the actual eco-

nomic development during the COVID-19, by accommodating both frequent moderate

3Throughout the paper, the benchmark model refers to constant-parameter DFM models of Bańbura
and Modugno (2014) and Bańbura et al. (2010), among others.
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Figure 2: Nowcasting the French GDP, 2005 – 2019
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Note: This plot shows the realizations (in black) and pseudo real-time nowcasts of French GDP from
2005 to 2019 constructed from the model with outliers(in blue) and the benchmark DFM model (in red).
Shaded areas denote the 68% bands. OECD recessions in gray.

shocks and rare large shocks, which characterise turbulent times.

The methodological contribution of this paper consists of two key components. Firstly,

I introduce fat tails and outliers into the DFM framework by incorporating them mul-

tiplicatively into innovation volatility. The standard stochastic volatility model repres-

ents innovations with two separate error processes: conditional volatility following a

log-normal auto-regressive model and a standard normal error. Inspired by the finance

literature, particularly Jacquier et al. (2004), I further decompose the latter into an

outlier state and noise, enhancing the model’s resistance to outliers. This approach in-

troduces pronounced jumps in the data rather than escalating stochastic volatility itself,

resulting in a more stable volatility trajectory. While it is possible to model outliers

additively, I demonstrate that the multiplicative approach achieves the same goal from

a measurement-error perspective and remains independent of the specification of other

components in the model. Consequently, outliers genuinely appear as one-off anomalies

within this framework.

Secondly, I explicitly model outliers using two distinct approaches, discussing their

different treatments of large jumps and interpretations of priors. Outliers are introduced

into the model in two ways. One approach assumes that innovations exhibit fat tails and

follow the Student-t distribution, a method more commonly employed in the literature.

The other approach utilises a uniform mixture distribution that transitions between reg-

ular observations and outlier states, in the spirit of Stock and Watson (2016). I show
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that the latter strategy is better suited for addressing large jumps akin to the COVID-19

shock, by assigning more probability mass to events which more than double the volatility.

The t-distribution, on the other hand, concentrates most probability mass on values close

to one by construction. The uniform mixture approach is also more intuitive in terms of

implementing and interpreting priors, as one can easily determine the prior probability of

landing in outlier states by counting the occurrences of outliers in the pre-sample, even

variable by variable. As we explore richer economic dynamics, we face the typical trade-

off: estimating more parameters increases estimation uncertainty. Therefore, I adopt a

Bayesian approach, which shrinks uninformative parameters toward a more parsimonious

specification to address the curse of dimensionality.

Upon applying these models to forecast the French economy for both pre- and post-

COVID periods, I arrive at three key findings. First, outlier-augmented models, irre-

spective of the distributional assumptions, consistently outperform the benchmark model

in both point and density forecasting. In the pre-pandemic sample, the full model incor-

porating uniform outliers demonstrates 5 – 18% improvements compared to the bench-

mark model, as indicated by reduced Root Mean Squared Error (RMSE) and Continu-

ous Ranked Probability Score (CRPS) values across all forecasting horizons. The t-

distribution approach results in similar gains, except for the longest forecasting horizon.

However, the ‘screening’ method, which replaces pre-defined outliers with missing values,

induces a negligible effect on accuracy. Notably, the most significant enhancements are

observed in the nowcasting horizons, where models with outliers outperform both the

benchmark and other stochastic volatility specifications in point and density nowcasts.

This performance extends even to the full sample up to 2022, and the findings remain

robust when alternative metrics for assessing prediction accuracy are employed.

Second, the significance of incorporating outliers becomes even more pronounced dur-

ing major crises such as the Great Recession and the COVID-19 pandemic. For instance,

when considering post-2020 data, the model with uniform outliers enhances the Root

Mean Squared Error (RMSE) of the benchmark specification by 44%. This represents

a substantial increase compared to the 13% improvement observed in the pre-COVID

scenario. In times of extreme events, outlier-augmented models distinctly differentiate

between short-term and long-lasting spikes in uncertainty. Consequently, they adequately

capture the peaks and troughs characterizing the Great Recession and the COVID-19
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crisis with greater timeliness and accuracy, while the benchmark model tends to underes-

timate the severity of the economic downturn and the subsequent rebound. The explicit

modeling of outliers enhances the forecasting of economic developments, including the

’V-shaped’ recovery in the initial phase of the pandemic.

Finally, when comparing different methods to incorporate outliers, the uniform mix-

ture approach appears as a more robust option compared to the commonly employed

t-distribution models. The uniform approach specifically targets extreme variations

without unduly disrupting the smoothness of the stochastic volatility (SV) process when

it is already behaving as expected. In contrast, t-distributed outliers tend to excessively

suppress the SV process, unconditionally decreasing the level of volatilities for all indicat-

ors in the dataset. It further flattens already smooth time series, such as the SV estimates

of GDP, resulting in nearly constant values over 40 years. These characteristics are less

desirable in light of the model assumptions and the established narrative in the existing

literature. Despite these drawbacks, the t-distribution method offers some benefits in

terms of forecasting, particularly during times of crises. Ultimately, the choice between

these approaches should be made based on the specific characteristics of the data and

research objectives, such as the frequency of outliers and the need for a stable model.

The structure of the paper is as follows: Section 2 describes the econometric framework

including the treatment of outliers. Section 3 introduces the data and provides results

from the in-sample analyses using the pre-COVID sample, with a focus on comparing

two different approaches to incorporate the outliers. Section 4 conducts pseudo real-time

forecasting exercises with pre and post-COVID samples. Section 5 studies a modest ex-

tension that accommodates both frequent moderate shocks and rare large shocks, which

characterised the COVID-19 period. Section 6 concludes.

Related Literature. This paper aims to achieve methodological advances in mac-

roeconomic forecasting with DFMs. After seminal papers such as Stock and Watson

(2002), Evans (2005), and Giannone et al. (2008) formalized the application of DFMs

to nowcast the economy, there have been many efforts to incorporate structural changes

within the DFM framework.4 Del Negro and Otrok (2008) allow for time-varying factor

loadings and volatilities, and Marcellino et al. (2016) introduce the stochastic volatil-

4See Bańbura et al. (2010) for the survey on nowcasting with standard DFMs.
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ity in innovations to factors and idiosyncratic components. Antolin-Diaz et al. (2017)

and Doz et al. (2020) feature shifts in the trend GDP growth and volatility over time.

Antolin-Diaz et al. (2023) is the closest to this paper, where they introduce the outliers

as an additive component that is assumed to follow the student-t distribution. While

building upon their foundation, this paper also examines the limitations of their method-

ology: their additive specification inadvertently introduces a quasi-differencing induced

bias, due to the dependency of outliers on other components within the model. Moreover,

using the t-distribution for modeling outliers tends to dampen the stochastic volatility

process in inherently smooth series. In response to these challenges, I propose alternative

approaches to mitigate these issues by (i) incorporating outliers in a multiplicative fash-

ion within the innovation volatility component and (ii) exploring two different strategies

for modeling outliers, student-t and uniform distributions, plus the combination of them.

More broadly, it also speaks to an empirical literature that explores the role of time-

variation, non-linearities, and non-gaussian shocks in macroeconomic models. This in-

cludes, but not limited to, Cogley and Sargent (2005), Primiceri (2005), Fernández-

Villaverde et al. (2015), Carriero et al. (2022), and Chan (2023) in Bayesian Vector

Autoregression (BVAR) models. This paper also takes a Bayesian perspective that en-

ables the inclusion of more parameters and provides probabilistic predictions, particularly

to take account of time-varying components and fat-tailed outliers.

The focus on the role of fat tails and outliers also relates to the studies addressing new

challenges to empirical models after 2020, such as Lenza and Primiceri (2020), Marcellino

et al. (2021), Schorfheide and Song (2021), and Cascaldi-Garcia (2022). Diebold (2020)

studies the real-time performance of the business conditions index by Aruoba et al. (2009)

during the early periods of the pandemic, and Lewis et al. (2022) provide a weekly

economic index that tracks the rapid economic developments during the first 10 months

of the pandemic. Ng (2021) interprets the variations around the outbreak as outliers and

attempts to clean the data by using COVID indicators as controls. This paper also takes

a similar view and explores the 2020 episode as a useful case study.

7



2 Econometric Framework

In this section, I introduce the dynamic factor model (DFM) which incorporates fat tails

and outliers. Building on the models of Antolin-Diaz et al. (2017) and Marcellino et

al. (2016), that introduce the shifts in long-run growth and stochastic volatility (SV) in

innovations, I describe how to model outliers from two distinct approaches: the student-

t and uniform mixture distribution. While the outliers are augmented by the SV of

innovations in a multiplicative way in both cases, I discuss how they differ in dealing

with large jumps and the interpretation of priors. In order to let the data speak, I

impose the standard Minnesota-type of priors based on the stylized facts of the data.

Finally, I briefly comment on the problem of mixed frequency and provide a sketch of the

estimation algorithm.

2.1 The dynamic factor model

Let yt denote n × 1 vector of macroeconomic indicators. The main idea of DFM is that

a small number of latent common factors, ft capture the majority of the joint dynamics

across variables. Hence, it is assumed that the dimension of ft is k × 1 and k << n. The

factors are loaded via coefficients Λ(L), which represent the response of each indicator

to a common shock. ut is an idiosyncratic component that captures variable-specific

movements or measurement errors. Eq (1) is what we usually call the “measurement

equation” in the standard DFM literature.

∆yt = ct + Λ(L)ft + ut (1)

In addition to the standard formulation, we allow the long-run growth rate of real

GDP, and possibly other series, to drift gradually over time: the time-varying intercept

ct catches shifts in the long-run mean of ∆yt.
5 This specification is based on accumulating

evidence that the long-run growth rate of GDP in advanced economies is lower than it

has been over the past decades (Fernald, 2014; Gordon, 2014, for example). Antolin-Diaz

et al. (2017) observe that standard DFM forecasts quickly revert to the unconditional

mean of GDP, so taking account of the variation in long-run GDP growth substantially

5Macroeconomic indicators are denoted as ∆yt, as I apply appropriate transformation according to
Table 1. Note that some indicators enter the estimation in levels, particularly the surveys, even though
I take the first differences in most of the series.
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improves point and density GDP forecasts even at very short horizons. Specifically, the

time-varying intercept ct is specified in the following way:

ct =

B 0

0 c

at
1

 , B =

1
1


where ct is composed of two components: the time-varying long-run growth rate at

and a vector of constants c. Note that the selection vector B only loads onto the first two

variables, GDP and consumption. It implies that at captures the time-variation in long-

run real GDP growth, which is shared by real consumption growth. This specification is

based on the permanent income hypothesis: consumers aim to smooth their consumption

throughout the lifetime, so they react more to permanent changes in their income than

transitory ones. Hence, rather than simply allowing a time-varying intercept only in GDP

by setting B = 1, taking GDP and consumption together may help separate growth into

long-run and cyclical fluctuations.6

Next, the latent factors and idiosyncratic components evolve with the following law

of motion:

(1− ϕ(L))ft = σϵtϵt (2)

(1− ρi(L))uit = σηitoitηit, i = 1, ..., n (3)

where ϕ(L) and ρi(L) are lag polynomials of order p and q, respectively. Following the

standard assumption from the literature, the residuals of the latent factor and idiosyn-

cratic components are orthogonal and uncorrelated with each other, i.e. ϵt ∼ iidN(0, 1)

and ηit ∼ iidN(0, 1). Importantly, each indicator displays outliers oit, which are incor-

porated in the stochastic volatility (SV) of innovations in a multiplicative way. A more

detailed discussion on the specification of oit follows in the next subsection.

Finally, following Primiceri (2005) and others, the time-varying parameters of the

model follow driftless random walks:

at = at−1 + va,t, va,t ∼ N(0, ω2
a) (4)

logσϵt = logσϵt−1 + vϵ,t, vϵ,t ∼ N(0, ω2
ϵ ) (5)

6While the low-frequency component of growth could be shared by other series, one also faces the
risk of misspecification. So I leave any slow-moving components in other indicators to be absorbed by
the idiosyncratic components. More discussion on this can be found in Antolin-Diaz et al. (2017).
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logσηi,t = logσηi,t−1
+ vηi,t, vηi,t ∼ N(0, ω2

η,i), i = 1, ..., n (6)

where σϵt and σηi,t capture the SV of innovations to factors and idiosyncratic compon-

ents. Modeling the trend as a random walk may sound unrealistic since it means that the

movement of real GDP growth could be unbounded. However, the drift takes place only

for a finite time, and the variance of this process is small, so they alleviate the problem.7

Note that this specification easily nests the DFMs previously proposed in the liter-

ature. By shutting down the outliers and loadings on lagged factors, i.e. oit = 1 and

Λ(L) = Λ, the model shrinks towards Antolin-Diaz et al. (2017). If we further limit

the time-variation in the intercepts, ct = c, we recover the model of Marcellino et al.

(2016), which features the DFM with SV. Finally, this model coincides with a more com-

monly used DFM model of Bańbura and Modugno (2014) by imposing dogmatic priors

ω2
a = ω2

ϵ = ω2
η,i = 0, that turn off the SV features.

2.2 Treatment of Outliers

In this paper, I construct an outlier-adjusted stochastic volatility (SV) model within

the DFM framework. While a typical SV-DFM model assumes changes in volatility to

be highly persistent, as in Eq (6), many macroeconomic time series display large, one-

off outliers due to policy changes, strikes, or natural disasters, even in the pre-COVID

period.8 By definition, these extreme observations are more reflective of transitory, rather

than permanent, spikes in volatility.

Hence, following Jacquier et al. (2004), I model the outliers in a multiplicative fashion

as in the Eq (3). If we set oit = 1, it corresponds to the standard SV model where

the innovations consist of two components with separate error processes: the conditional

volatility, σηi,t follows a log-normal auto-regressive model, and the standard normal error.

To allow for fat tails or outliers, I further separate the latter into oit and the standard

noise vηi,t. In the basic SV model, a spike in innovation means the volatility is high, but

introducing fat-tails provides an additional source of flexibility: it takes a spike in data

by introducing a large oit before increasing σηi,t . Hence, the intuition is that the basic

model results in a more variable sequence of the SV, while this model is able to resist

7An alternative strategy would be the model with discrete breaks. However, this is less likely to be
robust to misspecification than the reverse case, if the true data generating process is a random walk.

8Stock and Watson (2002) already noted the existence of such extreme observations.
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outliers and results in more steady dynamics of σηi,t .

I introduce outliers to the model in two ways. One way is to assume that innovations

display fat tails and follow the Student-t distribution, i.e. νi/oi,t ∼ χ2
νi
, as in Jacquier

et al. (2004). The degree of freedom νi is jointly estimated with other parameters of

the model, and the latent variable oit can be obtained by a scale mixture. While this

specification has been adopted more extensively in the literature, Student-t is not the

only way to model outliers. The other way is to assume the following uniform mixture

distribution for outliers, in the spirit of Stock and Watson (2016):

oit =

1 with probability 1− pi

U(2, 10) with probability pi

(7)

where the probability of ending up in outlier states, pi, follows the beta distribution

with parameters α, representing the number of occurrences of outliers, and β, that of the

normal times. This specification enables a highly persistent volatility state to infrequently

and temporarily jump to the outlier states above 1.9

This modeling strategy is more advantageous than the student-t approach in at least

two aspects. First, it is more geared towards modeling large jumps, like the COVID. Since

the t-distribution assigns most probability to values close to one, most of the outliers are

of moderate size. It also assigns some mass to values below one; this is not the perfect

tool to deal with the COVID period, where the drop in real activity was at least 5 times

deeper than any other recession since 1960. In the alternative approach, on the other

hand, the outlier states cannot take values below one. There is equal probability for

outlier states between 2 and 10, putting relatively more mass on the events that increase

volatility by more than twofold: so it is more adequate for modeling large jumps, like

COVID.

Moreover, this approach is more intuitive in terms of implementing and integrating

priors. In the case of the t-distribution, it is not straightforward to justify the variable-

specific prior on the degree of freedom νi.
10 However, since the parameter pi follows the

beta distribution in the latter approach, it is easier to implement and justify the priors:

9I discretize the distribution of oit using a grid, [1:1:10].
10For instance, Antolin-Diaz et al. (2023) impose νi = 1 for monthly and 30 for quarterly variables,

just to reflect the fact that outliers are observed less in case of the lower frequency. Such priors are not
based on exact derivation, so it is hard to extend them to take account of variable-specific rates.
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for instance, one can form the prior by counting the number of occurrence of outliers

in the pre-sample, variable by variable. I put a prior on pi based on the stylized fact

observed by Stock and Watson (2016) that the outlier occurs once every four years in 10

years of the pre-sample.

Note that despite such differences, both approaches share the same latent state rep-

resentation: residuals are written as the product of noise and outlier state. Antolin-Diaz

et al. (2023) propose an alternative way, where the outliers are present in the additive,

rather than multiplicative fashion:

∆yt − ot = ct + Λ(L)ft + ut, oit ∼ tvi(0, σ
2
oi) (8)

and construct the outlier-adjusted data via the Kalman filter. I show that the multi-

plicative approach achieves the same goal, while being free from quasi-differencing induced

bias that is present in the additive specification. First, by rearranging, we can rewrite

the above equation as:

∆y∗t = ct + Λ(L)ft + ut, ut ∼ N(0, 1)

∆yt = ∆y∗t + ot, ot ∼ tv(0, σ
2
o)

and this corresponds to the standard regression with measurement errors: since the

residuals are the sum of idiosyncratic components ut and outlier states ot, one can inter-

pret this as if the true data were sometimes observed with large errors. Then, identifying

the measurement error and subtracting from the data is not the only way to remove it.

Instead, we can formulate it in another way. The residual variance is sometimes larger

due to the outliers, and the aim is to downweight them when estimating parameters: this

corresponds to the multiplicative approach.

Meanwhile, the additive specification may lead to biased estimates. After quasi-

differencing the Eq (8), we can express the variance of residuals as V[(1−ρ1L−ρ2L
2)(uit+

oit)]
11. In order to simplify the problem, I add two additional assumptions:

Assumption 1. The idiosyncratic components uit and outlier states oit are cross-sectionally

orthogonal and uncorrelated to each other.

11In this case, I model the idiosyncratic components as the AR(2) process.
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Figure 3: Stochastic volatility: additive v. multiplicative
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Note: This plot shows the posterior estimate of stochastic volatility in the idiosyncratic components for
selected indicators. The black line represents the posterior median from the model with multiplicative
outliers. Red and blue lines are the posterior median and 68% bands from the additive approach,
respectively. Sample: 1980.1 – 2019.9. OECD recessions in gray.

Assumption 2. The outlier states oit are serially uncorrelated.

which are mostly innocuous by the definition of “one-off” outliers. Then, the variance

of residuals corresponds to:

V [(1− ρ1L− ρ2L
2)(uit + oit)] = σ2

ηit
+ (1 + ρ21 + ρ22)V (oit), V (oit) = σ2

oi(
νi

νi − 2
)

I provide a more detailed derivation in Appendix A.3. Here the role of outlier clearly

depends on ρ, the autoregressive coefficients of the idiosyncratic component uit, not

the outlier states oit. This is not an intended feature of the model. Moreover, in the

likely case of ρ > 0, it amplifies the variance of the outlier component: resulting in an

underestimation of the SV components in innovations.

To provide additional support for the derivation above, I study whether the analytical

results also hold empirically. Figure 3 shows the estimates of idiosyncratic volatility for

nine indicators from our dataset. The black line displays the results from the model
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with multiplicative t-outliers, while the red and blue lines indicate the posterior median

and credible intervals from the additive t-outliers approach. Estimates from the latter

fall significantly below the black line in most cases, confirming the analytical prediction

that the additive approach results in an underestimation of the SV components. This

underestimation arises as a by-product of the quasi-differencing technique, which is unique

to the additive modeling method. In contrast, the multiplicative approach proposed in

this paper avoids such unintentional biases.

2.3 Priors and model settings

Based on previous empirical findings, the order of the lag polynomial Λ(L) is set to 1, i.e.

it loads onto the contemporaneous and the first lag of the factor. Camacho and Perez-

Quiros (2010) reported that the survey data were better aligned with a distributed lag of

GDP; Antolin-Diaz et al. (2023) found that adding heterogeneous dynamics ‘rebalance’

the panel by allowing more weight to the “hard” variables, which are otherwise under-

weighted compared to the “soft” indicators. The number of lags in the autoregressive

coefficients of factors and idiosyncratic components, ϕ(L) and ρi(L), is set to 2, to allow

for medium-term frequency fluctuations as in Stock and Watson (1989).

I adopt a Bayesian approach with informative “Minnesota” style priors (Litterman,

1986) for the coefficients in Λ(L), ϕ(L) and ρi(L).
12 I set the prior mean of ϕ(L) to

0.9 for the first lag and zero in other lags, to incorporate a belief that the common,

contemporaneous latent factor captures a highly persistent but stationary process. The

prior mean of Λ(L) is set to the estimate of the standard deviation of each variable for

the first lag and zero otherwise, to reflect the belief that the factor corresponds to the

cross-sectional average of standardized variables. The prior for ρi(L) centers on zero for

all lags, the parsimonious model with no serial correlation. This prior aims to shrink the

idiosyncratic components towards an iid measurement error. I impose the variance on

the priors to be γ
l2

for all of the coefficients: the hyperparameter that governs tightness

of the prior, γ is set to 0.2, the standard choice from the VAR literature, and l is the lag

order. The idea is to shrink distant lags more strongly than the contemporaneous ones.

To express a preference for the more parsimonious model, I impose priors that shrink

12These are the most commonly adopted macroeconomic priors for VARs and formalize the view that
an independent random-walk model for each variable in the system is a reasonable ground for beliefs
about their time series behavior (Sims and Zha, 1998).
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variances of the time-varying parameters, ω2
a, ω

2
ϵ , ω

2
η,i, close to zero. Specifically, I set an

inverse gamma (IG) prior with one degree of freedom for these parameters – just the

minimum to obtain proper prior distributions. Regarding the scale parameter of the IG

distribution, I set ω2
a, ω

2
ϵ to 0.001 and ω2

η,i to 0.0001. Following the approach of Primiceri

(2005), I incorporate a prior about the time-variation: for example, the value of 0.001

corresponds to the conservative belief that the posterior mean of the long-run growth

rate fluctuates with a standard deviation of around 0.4 percentage points in annualized

terms over a period of ten years. In the end, the prior specification is conservative enough

to shrink the model towards a commonly used DFM model of Bańbura and Modugno

(2014) without the time-varying means and the SV, while still being loose enough to let

the data speak.

2.4 Mixed frequency and missing data

Macroeconomic indicators are measured at different frequencies. For instance, the real

GDP and national accounts variables are usually observed every quarter, while survey

data and monthly indicators of real activity are released every month. To efficiently

integrate information from the data observed at different frequencies, the standard way is

to follow Mariano and Murasawa (2003) which links the observed growth rates of quarterly

variables yQt to unobserved monthly growth yMt via the first-order Taylor expansion:

yQt =
1

3
yMt +

2

3
yMt−1 + yMt−2 +

2

3
yMt−3 +

1

3
yMt−4 (9)

The mixed frequency issue collapses into the problem of missing data, where the model

is specified at monthly frequency and we only observe every third observation of yQt . The

standard approach is to estimate the latent factors, parameters, and missing data points

jointly using the state space representation of the DFM via the Kalman filter. Note that

substituting the Eq (1) into (9) yields:

yQt =
1

3
λ′
yft +

2

3
λ′
yft−1 + λ′

yft−2 +
2

3
λ′
yft−3 +

1

3
λ′
yft−4 (10)

+
1

3
uyt +

2

3
uy,t−1 + uy,t−2 +

2

3
uy,t−3 +

1

3
uy,t−4 (11)
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This drastically increases the size of the state vector, which includes 4 lags of ft and

ut. While the dimension of the state vector is only k × (p+1) if all indicators are at the

monthly frequency (so no approximation is needed), the use of this approximation requires

the dimension to be max(p,5)×nQ× k. For instance, in the case of p = 2, k = 1, and nQ

= 4, the size of the state space rises from 3 to 20, more than a six-fold increase. Such an

expansion leads to unnecessarily complicated state-space representation and significant

rise in computation costs.

To remedy this issue, I specify the model entirely at the monthly frequency by using

the interpolated monthly values for quarterly indicators. Specifically, instead of applying

the Mariano and Murasawa (2003) approximation to the quarterly variables yQt , we can

also implement this for the unobserved quarterly idiosyncratic components, uQ
t . Then Eq

(1) and (3) yield the following state-space representation:

uQ
i,t = Hxi,t + ξi,t, ξi,t ∼ N(0, R) (12)

xi,t = Axi,t−1 + ei,t, ei,t ∼ N(0, Q) (13)

with xi,t = [uM
i,t u

M
i,t−1 uM

i,t−2 uM
i,t−3 uM

i,t−4]’ , H = [1
3

2
3
1 2

3
1
3
], A = [ρ1 ρ2 01×3; I4 04×1],

Q = [σηitoit; 04], and R is a small number. We estimate this system using the Kalman

filter at the beginning of the algorithm to obtain the latent variable ûM
i,t . Then, together

with λ̂y and f̂t obtained from the previous iteration, we obtain an unobserved monthly-

interpolated quarterly value yMt = λ̂yf̂t + ûM
i,t . A more detailed explanation follows in

Appendix A.2.

2.5 Estimation algorithm

I estimate the eq (1) – (7) with the Bayesian approach using a hierarchical Gibbs sampler

(Moench et al., 2013), to obtain the posterior distribution of parameters and factors.

So whenever possible, I parallelized the steps to reduce the computational costs. Since

the idiosyncratic components in the model feature autocorrelation, the state space is

rewritten in terms of quasi-differences. The sampling method for the SVs follows Kim

et al. (1998), which provide us with faster speed than the exact Metropolis-Hastings

algorithm of Jacquier et al. (2004). For the identification of factors, I adopt the steps

proposed by Bai and Wang (2015). The full details of the algorithm can be found in
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Appendix A.2, and below I provide a sketch.

Algorithm. Let θ = {λ,Φ, ρ, ωa, ωϵ, ωη, ν} be the underlying parameters of the model,

and Φ, ρ represent the autoregressive coefficients for the factor and idiosyncratic com-

ponents. The latent states to be estimated are {at, ft, σϵ,t, σηi,t, oit}Tt=1. The superscript j

denotes a current draw. The algorithm consists of the following steps:

1. Construct monthly-interpolated values for quarterly variables. For the quarterly

variables i = 1...nQ, compute ∆yQit − cit − λi(L)ft, given aj−1
t , f j−1

t , λj−1 from the

previous iteration. Then, using the state space in Eq (12) and (13) and conditional

on ρj−1, {σj−1
ηi,t }Tt=1, draw ûM

i,t by employing the Kalman filter and smoother. Then

we obtain the monthly-interpolated values, ∆yM,Q
it = cit + λi(L)ft + ûM

i,t .

2. Draw the latent factors and autoregressive coefficients. Conditional on ∆yMit and

the parameters θj−1,

(a) Draw the factor and the trend, p({ajt , f
j
t }Tt=1|θj−1, {σj−1

ϵ,t , σj−1
ηi,t }Tt=1, y) using the

Kalman filter and smoother.The state space is rewritten in terms of quasi-

differences at this step, conditional on ρj−1 and {σj−1
ϵ,t , σj−1

ηi,t }Tt=1.

(b) Draw the variance of the time-varying GDP growth component from the

Inverse-Gamma (IG) posterior, p(ω2,j
a |{ajt}Tt=1).

(c) Given {f j
t }Tt=1 from the previous step, draw the autoregressive parameters of

the factor VAR, Φj from the Normal posterior p(Φj|{f j
t , {σ

j−1
ϵ,t }Tt=1). Then

draw the SV component of innovation to the factors, p({σj
ϵ,t}Tt=1|Φ, {ft}Tt=1),

using a mixture of normals following Kim et al. (1998). Draw ω2,j
ϵ conditional

on {σj
ϵ,t}Tt=1 and the IG prior.

3. Draw the factor loadings and serial correlation coefficients of idiosyncratic compon-

ents. For each variable i = 1...n and conditional on {f j
t }Tt=1,

(a) Draw the loadings λj from p(λj|ρj−1, {f j
t , σ

j−1
ηi,t }Tt=1, y). They can be estimated

via GLS, conditional on ρj−1
i and σj−1

ηi,t . Following Bai and Wang (2015), I

restrict the loading of GDP on ft to be unity for the identification.

(b) Draw serial correlation coefficients ρj from p(ρ|λj, {f j
t , σ

j−1
ηi,t }Tt=1, y) from the

Normal posterior, based on the {uj
i,t}Tt=1 = yt − λjf j

t and the autoregression

with heteroskedasticity.
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4. Draw the outlier-adjusted SV of innovations. For each variable i = 1...n, I obtain

the residuals u∗
i,t = (1− ρj(L))uj

i,t. Then,

(a) (in the case of t-distribution) draw p(νj|u∗
i,t, σ

j−1
ηi,t ) following Jacquier et al.

(2004), and also draw p(oji,t|νj, u∗
i,t, σ

j−1
ηi,t ), using νj/oji,t ∼ χ2

v+1.

(b) Obtain mixture states conditional on (u∗
i,t, o

j
i,t, σ

j−1
ηi,t ) in logs, following Kim et

al. (1998). Construct the state space with logσηit as the latent variable, and

apply the Kalman filter and smoother to draw new {σj
ηi,t}Tt=1.

(c) (in the case of uniform mixture distribution) conditional on the {σj−1
ηi,t , o

j−1
i,t }Tt=1,

obtain the mixture states and draw p(oji,t|u∗
i,t, σ

j
ηi,t). Update p

j
i after calculating

the number of outliers based on the cdf of the mixture normals.

(d) Based on the new estimates of the SV, draw p(ω2,j
ηi |{σ

j
ηi,t}Tt=1) from the IG

posterior distribution.

5. Repeat the steps until convergence has been reached.

After estimating 7000 draws from the above Gibbs-sampling algorithm, I discard the

first 2000 as burn-in draws. The rest 5000 draws of the model parameters and latent

variables are used for inference.

3 Implications of outliers: Application to France

In this section, I explore the implications arising from explicit modeling of outliers and

conduct a comparative analysis of two distinct approaches by applying these models to

the French economy. I begin by describing the datasets closely monitored by market

participants. Next, I demonstrate how outlier-augmented models improve the in-sample

fit in comparison to the incumbent Dynamic Factor Models (DFMs). Finally, I present the

in-sample estimates of various model features, including idiosyncratic volatilities and long-

term growth, to facilitate a comparison between the t-distribution and uniform mixture

models for incorporating outliers.

3.1 Data

Table 1 describes the dataset which consists of 27 variables in total: 11 soft and 16 hard

indicators. Among the latter, three are measured at a quarterly frequency, and the rest
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Table 1: Indicators Used, France

Type Variable Relevance Delay Start Transformation

Quarterly Real GDP 89 2 Jan-1980 % QoQ
Real Investment (Gross Fixed Capital Formulation) 2 Jan-1980 % QoQ
Total volume of hours worked (employees) 2 Jan-1980 % QoQ

Survey BdF survey: change in output, manufacturing industry 0 Jan-1980 Level
(11) BdF survey: expected production 0 Jan-1980 Level

BdF survey: new orders 0 May-1981 Level
BdF survey: sentiment indicator for manufacturing 51 0 May-1981 Level

Composite business climate indicator 11 0 Jan-1980 Level
Manufacturing: order books and demand 0 Jan-1980 Level
Manufacturing: general outlook (97) 0 Jan-1980 Level
Manufacturing: probable trend 0 Jan-1980 Level
Services: expected activity 0 Jan-1991 Level
Services: expected demand (77) 0 Jan-1991 Level
Consumer confidence 80 0 Jan-1980 Diff

Consumption Household consumption: manufactured goods 17 1 Jan-1980 % MoM

Output Industrial production 60 2 Jan-1980 % MoM
(7) Capacity utilization 1 Jan-1981 Diff

Retail sales 55 2 Jan-1980 % MoM
Car registration 90 1 Jan-1980 % MoM
Building permits 1 Jan-1994 % MoM
Industrial production: construction 60 2 Jan-1990 % MoM
Turnover Index: manufacturing 11 2 Jan-1999 % MoM

Labor Registered unemployment level for France 37 1 Jan-1980 % MoM
(3) Active job seekers (A,B,C) 1 Jan-1996 % MoM

New vacancies 1 Jan-1989 % MoM

Trade Exports: value goods for France 51 2 Jan-1980 % MoM
(2) Imports: value goods for France 54 2 Jan-1980 % MoM

Note: This table provides the list of variables in the dataset. It also provides the following additional details: the Bloomberg relevance
index, the beginning of each series, and the transformation applied to the data. All series are publicly available from the FRED and
DBnomics website. % QoQ: quarter-on-quarter changes, % MoM: month-on-month changes, Diff: first differences.

are monthly indicators. The choice of variables is based on the evidence from the lit-

erature rather than a data-driven approach. The three quarterly indicators – output,

investment, and total hours worked – are known to be strongly procyclical and key indic-

ators of the business cycle. Investment and hours could be informative for capturing the

cyclical movements, as they are sensitive to business cycle fluctuations (Stock and Wat-

son, 1999). As the indicator of consumption, I use the monthly household consumption

of manufactured goods, which exclude the durable goods spendings. While it lacks the

services consumption compared to the quarterly measure in the national accounts, the

monthly data have shorter publication lags that may provide a more timely assessment

of not only the economic activity but also the trend, as the permanent income hypothesis

suggests that taking the GDP and consumption together may help separate the long-run

and component from the growth.

Inspired by Cascaldi-Garcia et al. (2021), I select monthly indicators based on the

Bloomberg relevance index, among the large number of candidate series available. This

index indicates the percentage of Bloomberg users who set an automatic alert for the
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release of specific data. Specifically, I take the variables whose relevance index is above

50% and the ones classified as the ”Market Moving Indicators”. The second column

in Table 1 reports this index for each indicator in the dataset.13 It is well known that

market participants closely monitor macroeconomic data releases to extract signals on

the current state of the economy, since it heavily affects the performance of their asset

portfolios.14 Hence, I believe this is a reasonable starting point to select the monthly

indicators.

While in principle I could construct a larger dataset by including broader categories

of data and more disaggregated series, Boivin and Ng (2006) found that more data are

not always better for factor analysis: a strong correlation in the idiosyncratic components

across the disaggregated series within the same category may worsen both the in-sample

fit and out-of-sample forecasting performance. Alvarez et al. (2012) reaches a similar

conclusion by finding high persistence in either the common factor or the idiosyncratic

errors for the large-scale DFMs, concluding that a small-scale dynamic factor model that

uses one representative indicator of each category yields better forecasting results.

The choice of monthly indicators in Table 1 reflects the above findings from the lit-

erature. The market participants closely monitor variables across many different sectors,

such as the labor market (e.g., the unemployment rate), the industrial sector (e.g., the in-

dustrial turnover), the construction sector (e.g., the index of production in construction),

private consumption (e.g., retail sales and car registrations), and the external sector (e.g.,

exports and imports of goods). At the same time, most of the hard indicators are the

headline indicators for each category: so the economists focus less on the disaggregated

data to track the state of the economy. In the end, we end up with a medium-sized panel

with representative indicators for each sector.15 Importantly, I include monthly surveys

that represent the perceptions of economic agents about current and future economic

prospects from the two major sources: Banque de France and the National Institute of

Statistics (INSEE). These “soft” data have a high signal-to-noise ratio and provide timely

information to track the economy.

13Since the index does not vary dramatically over the sample, I take the relevance index reported in
December 2019, which is the last observation before the COVID period.

14In fact, Altavilla et al. (2017) reports that asset prices strongly react to data releases when the
outcome differs from the expectations of market participants.

15Beyond this criterion, I include two extra indicators, i.e. the capacity utilization and building
permits, which may lead the existing headline indicators in the industrial and construction sectors.
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The dataset spans the period from January 1980 to December 2022, including the

recent COVID-19 episode. Since I focus on the ability of this model in a traditional now-

casting setting, I first utilize only the pre-COVID sample that ends in December 2019

and then employ the full series up to 2022, in the next section. Moreover, I exclude prices

and monetary and financial indicators that are often available daily or weekly. Bańbura

et al. (2013) have shown that these types of data do not improve the performance of a

now-casting model due to their noisy nature. I also abstain from “alternative” data, such

as web searches and text-based measures, at this point and leave these avenues for future

research.16

3.2 In-sample fit

I start by presenting the in-sample fit across models, with the sample ending in 2019.

Here I compare six models: (1) the model with t-distributed outliers, (2) the model with

outliers following uniform mixture distribution, (3) the model without outliers but the

time-varying long-run growth and stochastic volatilities (SV) are still present (Antolin-

Diaz et al., 2017), (4) the benchmark DFM model of (Bańbura and Modugno, 2014), and

(5–6) the latter two models with the outliers replaced by missing values (‘SV miss’ and

‘Basic miss’).17 Since they correspond to a simple approach to treat outliers, we employ

simpler models by moving right across the columns, until reaching the benchmark.

Here I evaluate the models in two aspects: point and density forecasts. I use two

commonly used criteria, the root mean squared error (RMSE) and mean absolute error

(MAE) for the former. A lower RMSE or MAE implies that the model generates more

accurate point forecasts. Since I adopt the Bayesian approach, density forecasts are also

easily obtainable from the DFM models. While there are several measures for density

forecast evaluation, I take the one of the most popular metric, the average log score: it

assigns a higher value for the model that provides the highest probability to the realiz-

ations. I also use another metric, the continuous rank probability score (CRPS), which

provides more robustness to outliers and the values that are close but not equal to the

realization. In the end, a total of four metrics are used, as shown in the rows of Table 2.

16Evidences on the ability of alternative data to improve nowcasting the economy is still mixed: for
instance, Aaronson et al. (2022) claim that Google Trends leads to superior real-time forecasts of initial
UI claims compared to other models. However, Larson and Sinclair (2022) find the opposite result.

17Here I define the outliers as the observations five-interquartile range away from the median.
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Table 2: In-sample fit, pre-COVID

Measure/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting

RMSE 0.254∗∗∗ 0.277∗∗∗ 0.277∗∗∗ 0.277∗∗∗ 0.362 0.362
MAE 0.211∗∗∗ 0.228∗∗∗ 0.228∗∗∗ 0.229∗∗∗ 0.281 0.282

(b) density forecasting

Log score −3.688∗∗∗ −4.716∗∗∗ −4.984∗∗∗ −5.029∗∗∗ -28.020 -28.103
CRPS 0.172∗∗∗ 0.191∗∗∗ 0.192∗∗∗ 0.192∗∗∗ 0.257∗ 0.258

Note: This table provides the point-forecasting performance of different models: the DFM model with outliers
following the student-t and uniform mixture distribution, respectively; the model with stochastic trend and volatility
(Antolin-Diaz et al., 2017); and the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’
are the latter two models with the outliers, which are defined as the observations five-interquartile range away from
the median, replaced by missing values. Sample: 1980.1 – 2019.9. The asterisks are related to the p-value of the
null hypothesis that the basic model performs as well as others against the alternative that the other model performs
better, based on the test statistic of Diebold and Mariano (1995). *** is significant at the 1% level, ** at the 5%
level, and * at the 10% level.

Results from Table 2 suggest that the model with outliers provide better in-sample

fit than the basic DFM. All of them reject the Diebold and Mariano (1995) test of the

null hypothesis that the performance of the basic and alternative model is comparable,

at the 1% significance level. The student-t and uniform approaches result in roughly 30%

and 23% reduction in the RMSE, compared to the benchmark model. Moreover, a simple

approach to replace outliers by missing values turns out to be not so effective, except some

improvement in terms of density forecasting: performance of the ‘basic miss’ model is not

better than the benchmark except for the CRPS, and when the SV process is explicitly

modelled, the model with and without replacement display identical performance for all

metrics except the log score. Finally, the t-distribution model provides the best in-sample

fit, with the uniform approach being the second best. While the latter is just as good as

the model with outliers but the SV present in terms of point forecasting, it still provides

a better performance in density forecasting.

3.3 Implications of modeling choices: in-sample estimates

3.3.1 Stochastic Volatility

I begin by displaying the estimates of the SV of innovations to idiosyncratic components,

σηi,t , in Figure 4. Given that the two outlier modeling approaches, and even the standard

DFM-SV model without outliers, diverge primarily in this aspect, it serves as an appro-
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priate initial point to gain further insights into the role of outliers and the consequences

of modeling choices. Here I select real GDP growth and three monthly indicators that

are closely related to the business cycle: industrial production, construction, and unem-

ployment (levels) for France. The full results from all indicators, including quarterly and

soft indicators, can be found in the Appendix B.2.

I comment on two observations. First, the t-distributed outliers (top panel) tend

to excessively depress the SV process. The differences between the two approaches are

clearly visible in Figure 4: the t-distributed outliers lower the level of idiosyncratic volat-

ilities for the all of four indicators, which is not an intended feature of the model. As

shown in the Appendix B.2, this phenomenon is not specific to selected variables but all

indicators in the dataset, including the quarterly and monthly soft variables. While this

approach results in a more persistent SV process, which is consistent with the driftless

random walk assumption in Eq (6), the t-distributed outliers flatten out even the smooth

series: for instance, the SV process of the industrial production (in black) is already free

from strong cyclical variations, but it is unnecessarily suppressed even further. The SV

of GDP is almost constant over 40 years, which is still consistent with the assumption in

the model but not in line with the established narrative.

On the other hand, those from the uniform mixture distribution (bottom panel) ef-

fectively targets only extreme variations. This approach leaves the SV process untouched

which it already lacks cyclical variations, resulting in similar dynamics to the baseline

model. When the process exhibits strong cyclical variations, however, extreme spikes

are removed, as shown in the case of the IP-construction and unemployment. Consid-

ering these aspects, the uniform approach seems more capable than the widely used

t-distribution models of delivering more model-consistent estimates. The Appendix B.2

shows that this also applies to other monthly and quarterly indicators.

To shed more light on the source of such differences, I present the posterior probabilit-

ies of outlier states estimated by both the t-distribution and uniform mixture approaches

in Figure 5. These outlier states, drawn from posterior estimates each period, are categor-

ized into three regions: below 2, between 2 and 5, and above 5. These regions correspond

to cases of no (or small) outliers, moderate outliers, and large outliers, respectively.18 The

18I have chosen a cutoff value of two to facilitate the comparison between the two modeling choices.
Note that while the support for outliers is a positive real line in the student-t case, the uniform approach
discretizes it between 1 and 20.
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Figure 4: Stochastic volatility: with v. without outliers
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(a) student-t outliers v. no outlier
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Note: This plot shows the posterior estimate of stochastic volatility in innovations to the idiosyncratic
components. The black line represents the posterior median from the model without outliers. Red
and blue lines are the posterior median and 68% bands from the model with outliers following the t-
distribution and uniform mixture distribution, respectively. Sample: 1980.1 – 2019.9. OECD recessions
in gray.
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Figure 5: Posterior probabilities of outlier states

(a) student-t outliers
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(b) uniform mixture outliers

Note: The stacked bars represent posterior probabilities for realizations of outlier states that are larger
than two. The blue bars correspond to the probability that the outliers are within the range between
two and five, and the orange bars denote the probability of outlier states that are larger than five to take
place. Sample: 1980.1 – 2019.9.

figure directly illustrates the probability of outliers falling within the latter two regions,

with the complement representing values below 2 which represent scenarios with no or

minor outliers. For this analysis, I have selected two monthly indicators, namely indus-

trial production and construction, which display relatively smooth and volatile processes,

respectively. Additional results for other monthly and quarterly indicators, including

posterior estimates of outlier states, can be found in Appendix B.3.

Figure 5 clearly illustrates a difference between the two approaches. First, the t-

distribution approach tends to produce more moderately sized outliers, and they occur

with greater regularity. The model consistently generates moderate-sized outliers in every

period, even for the industrial production index, which already lacks high-frequency vari-

ations in its stochastic volatility process. In the case of the IP-construction index, the
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model frequently identifies moderate-to-high outliers across time, often more than 60 out

of 100 draws. However, when outliers do occur, they are mostly of moderate size. On

the contrary, the uniform approach identifies outlier states less frequently, but when they

do occur, they are predominantly large in size. It is noticeable that outliers are drawn

more frequently for the IP-construction index, which displays frequent spikes and strong

cyclical variations. Industrial production, with its slower-moving SV process, features

infrequent outliers over the sample, occurring less than 20 times over the entire period

of 477 months. Consequently, while the the t-distribution assumption lowers the level of

idiosyncratic volatilities across all indicators, the uniform approach leaves the SV process

mostly untouched and target only extreme spikes, for most of the times.

These differences between the two approaches clearly stem from the model specifica-

tions detailed in Section 2.2. The key disparity lies in the assumed densities for outlier

states. While the density of outlier states peaks around the value of 1 for both meth-

ods, the t-distribution concentrates most of the mass on values close to 1. In the case

of the uniform approach, there is an equal probability of outlier states between 2 and

10. As a result, the former allocates relatively more mass to values above 1 in total,

although these values are centered around 1. The latter, on the other hand, places relat-

ively more mass on the far-right tail. From an empirical standpoint, it translates to the

t-distribution approach characterizing outliers as more moderately sized but occurring

more frequently, whereas the uniform approach tends to identify large outlier states. In

the context of macroeconomic data, outliers are typically perceived as infrequent occur-

rences with a substantial impact when they do occur. Therefore, the latter approach

seems more aligned with our notion.

3.3.2 Long-run growth

In the previous subsection, we noted that the t-distribution approach tends to generate

moderate-size outliers too frequently due to its concentration of mass around values

close to 1. This behavior may lead to unwanted characteristics in volatility estimation.

However, is this the only side effect? To address this question, we now explore additional

model estimates.

Figure 6 plots posterior estimates of the time-varying component in long-run real GDP

growth, at, from the model. Here I show the estimates from the two different approaches
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Figure 6: Posterior estimate of trend GDP
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Note: This plot shows the posterior estimate of the long-run growth from the two models, the one with
(in blue) and the one without (in red) outliers. The solid lines and shaded areas denote the posterior
median and 90% bands, respectively. Sample: 1980.1 – 2019.9. OECD recessions in gray.

to model outliers (the student-t and uniform mixture) and compare each of them to the

model without outliers. Our prior is that they are likely to be identical: the trend is

modeled as driftless random walks as in Eq(4), and the idiosyncratic components lack

stochastic volatility by the definition of long-run shift. Since no additional components

related to the trend were imposed in the model with outliers, we anticipate that the

estimates are unlikely to vary. However, it is interesting to note that the way outliers are

modeled results in slight differences in the trend estimates. In the case of t-distributed

outliers (top panel), trend estimates are less smooth, displaying more high-frequency

variations. There is also a spurious IT boom in the late 1990s peaking around 2000,
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which is true for the U.S.economy but not France. These are less desirable features given

the model assumptions and the established narrative in the literature.

On the other hand, when outliers are drawn from the uniform distribution (the bottom

panel), the posterior estimates of the long-run growth from the two models, the one with

(in blue) and the one without (in red) outliers, are almost identical. The estimated

trend captures low-frequency, slow-moving components of growth: it shows the gradual

slowdown until 1995, slight rise from 1995 to 2000, and another prolonged decline until the

Great Recession. I also plot the posterior estimates of the trend and real GDP growth

together in the Appendix B.1. This result is consistent with the narrative of Fernald

(2014) that the bulk of the US economy slowdown took place between the turn of the

century and the Great recession, as the IT boom faded. Note, however, the size of the

IT boom seems much more modest in the case of France, in line with observations from

Gordon (2004) that the level of productivity in Europe has been falling behind the US

since 1995, due to regulatory barriers in ICT-using industries like wholesale and retail

trade and in securities trading.

In Appendix B.1, I also provide posterior estimates of the volatility of the common

factor, denoted as ft, from both models. Despite our assumption that the volatilities of

innovations in the factor and idiosyncratic components are independent, the estimates

from both models share common dynamics but show slight differences in levels. Similar

to what we observed with long-term growth, such differences are more pronounced in the

t-distribution model. In summary, the uniform approach appears to be a more robust

choice in terms of estimating parameters that may offer structural insights.

4 Out-of-sample forecasting exercises

To replicate the situation of policymakers and market participants, I conduct out-of-

sample forecasting analyses with the data available at each point in time. Specifically,

using data going back to 1980, I produce nowcasts of French GDP growth from 2005

and evaluate the point forecasting performance of the models relative to the benchmark.

Since the historical data vintages are not readily available for France, I run the exercise in

pseudo-real time, i.e. based on the recent vintages but taking account of the publication

delays. I adopt an expanding out-of-sample window: after January 2005, the model is
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re-estimated when the new data are released. Since repeating the estimation for hundreds

of periods takes huge computational costs, I rely on modern cloud computing facilities

for this exercise.19 Then, I run similar exercises with an extended sample up to 2022,

which includes the COVID-19 episode.

4.1 Out-of-sample forecasting: pre-COVID

Figure 7 shows the pseudo real-time nowcasts of French GDP from 2005 to 2019, the pre-

COVID period. On average, the nowcasts from the model with outliers (in blue) track the

economic development over the last 15 years, including the Great Recession and the Euro

Area debt crisis. The model with outliers perform better than the benchmark (in red), the

basic DFM model, in two aspects. First, they capture the peaks and troughs during the

Great recession more timely and accurately, while the benchmark model underestimates

the severity of the recession and the rebound afterwards. Second, while the estimates from

the benchmark model are overly persistent after 2012 with an upward bias, those from the

model with outliers display more cyclical variations. Between two approaches to model

the outliers, the student-t outliers are slightly better in capturing the peaks and troughs

during the Great recession, while the uniform approach relatively underestimates the fall

in 2009Q1 and the subsequent recoveries. The former, however, also has a drawback: it

creates spurious cycles at the end of the sample. Overall, explicitly modeling outliers

provide a more accurate picture of the current state of the economy, particularly during

the extreme events.

To assess the forecasting ability of models with outliers, I conduct a more formal

forecast evaluation in Table 3. As in the Section 3.2, here I compare six models: (1) the

model with t-distributed outliers, (2) the model with outliers following uniform mixture

distribution, (3) the model without outliers but the time-varying long-run growth and SV

are still present (Antolin-Diaz et al., 2017), (4) the benchmark DFM model of (Bańbura

and Modugno, 2014), and (5–6) the latter two models with the outliers replaced by

missing values (‘SV miss’ and ‘Basic miss’). Models become simpler as we move right

across the columns, reaching closer to the benchmark model.

19It takes around 40 minutes to complete the estimation for one period on a computer with an Intel
i5 processor and 8GB of RAM. I thank Stephane Brice and the IT team at PSE for excellent technical
support. One can also employ a more popular alternative channel, e.g. the Amazon Elastic Compute
Cloud (EC2) or Microsoft Azure.

29



Figure 7: Pseudo real-time nowcasts of French GDP, 2005 – 2019
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Note: This plot shows the realizations and pseudo real-time nowcasts of French GDP from 2005 to 2019
constructed from the two models, the one with outliers(in blue) and the benchmark DFM model (in red).
The black line represents the actual realizations of GDP growth, and the blue and red solid lines and
shaded areas denote the posterior median and 68% bands, respectively. OECD recessions in gray.

I evaluate the models in terms of point and density forecasts, and among many meas-

ures available, I use two commonly used metrics for each: the root mean squared error

(RMSE) and the continuous ranked probability score (CRPS).20 Here I present the values

in relative terms compared to the benchmark basic DFM model, except the benchmark

itself in the last column. The rows in Table 3 correspond to forecasting horizons: I set

the last month of the reference quarter as month 0 and start producing forecasts from the

first month of the last quarter. In other words, the first three rows are the one-quarter

20Appendix C.1 reports the results based on all four measures, including the mean absolute forecast
error (MAFE) and log score, in absolute terms.
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Table 3: Out-of-sample performance, pre-COVID

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: relative RMSE RMSE

-5 month 0.986 0.951 0.949 0.952 0.998 0.484
-4 month 0.961 0.957 0.950 0.953 0.999 0.459
-3 month 0.959 0.928 0.935 0.929 1.001 0.422

-2 month 0.945 0.879 0.877 0.880 0.996 0.374
-1 month 0.881 0.877 0.877 0.876 0.993 0.347
0 month (end of reference Q) 0.900 0.873 0.873 0.874 0.995 0.340

1 month 0.899 0.865 0.872 0.866 0.987 0.338

(b) density forecasting: relative CRPS CRPS

-5 month 0.987 0.946 0.945 0.950 0.994 0.268
-4 month 0.962 0.955 0.952 0.952 1.002 0.259
-3 month 0.948 0.922 0.931 0.925 1.002 0.249

-2 month 0.883 0.850 0.850 0.853 1.000 0.235
-1 month 0.802 0.829 0.830 0.829 1.002 0.233
0 month (end of reference Q) 0.818 0.826 0.829 0.832 1.001 0.234

1 month 0.822 0.817 0.827 0.822 0.988 0.233

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the
student-t and the uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-
Diaz et al., 2017), compared to the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are
the latter two models with the outliers, which are defined as the observations five-interquartile range away from the
median, replaced by missing values. Using data going back to 1980, I estimate the model at each point in time for
2005.1 – 2019.9 in an expanding window.

ahead predictions, the next three rows are “nowcasts” of the current quarter, and the last

one is the forecasts on GDP of the last quarter, or “backcasts”. Since the first release

of GDP takes place 40 days after the end of the reference period in France, the backcast

horizon covers only one month.

I present three takeaways from the results in Table 3. First, the outlier-augmented

models, regardless of the distributional assumptions, outperform the benchmark model in

terms of point and density forecasting. The full model with uniform outliers display lower

RMSE and CRPS than the benchmark model in all horizons, and the same applies to the

t-distribution approach. While the ‘screening’ method, which replaces the pre-defined

outliers by missing values, yields negligible impact, the SV model without outliers also

dominate the basic DFM. Such results highlight the importance of modeling stochastic

volatility in idiosyncratic components: as the sample includes stable expansions (Great

Moderation) and sudden depressions (Great Recession), the constant volatility assump-

tion is not enough to track the state of the economy.

Second, improvements are particularly remarkable at the nowcasting horizons. For
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instance, at the end of the reference quarter, the SV model with uniform outliers improves

on the RMSE of the benchmark specification by 13%, and this is the best model in terms

of point forecasts. The student-t approach yields a 20% reduction in CRPS relative to

the basic DFM, also outperforming all other modeling choices: the model with outliers

outperform the benchmark and other SV specifications in point and density nowcasts.

The last column and Appendix C.1 show that all models produce more accurate point

forecasts as more information become available: the RMSE steadily decreases as the

forecasting horizon approaches the end of the quarter, across all columns except for the

t-distribution model.

Finally, the explicit modeling of outliers appears to offer marginally more benefit

in terms of density than point forecasts. The relative reduction in CRPS becomes no-

ticeably larger than that of RMSE after the two month ahead horizon. Employing an

alternative measure, the log score, tells us a similar story as shown in the Appendix

C.1.21 The outlier-augmented models also yield consistently better density forecasts than

other SV specifications in all horizons. Interestingly, the uniform approach outperforms

the student-t method for point forecasting, but the situation reverses when it comes to

density forecasting. Overall, the results highlight a strong forecasting performance of

Bayesian DFM models with outliers compared to the benchmark in terms of point and

density forecasts for the French GDP.

4.2 Out-of-sample forecasting: post-COVID

I move on to conduct similar pseudo real-time exercises with an extended sample up to

September 2022, which includes the COVID episode. Figure 8 shows the pseudo-real

time nowcasts of French GDP from the third quarter of 2019 to the end of 2022 with the

ex-post realizations (in black) and the major events, e.g. the first nationwide lockdown

and subsequent waves. It is clearly visible that the model with outliers (in blue) better

tracks the actual dynamics during the year 2020. Nowcasts from the benchmark model

(in red) decline only in June, and the degree of the drop and recovery is modest in both

cases. The model with student-t or uniform outliers expects a large fall since April 2020,

21I abstain from conducting the Diebold and Mariano (1995) test for the out-of-sample analyses in
this paper, since Diebold (2015) emphasizes that this test is for comparing forecasts, not models, and
the optimal model comparison is based on full-sample residuals, not out-of-sample forecast errors. For
this reason, I present the test results only in the Appendix, just for comparative predictive performance.
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Figure 8: Pseudo real-time nowcasts of French GDP, 2020
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(a) student-t outliers v. benchmark DFM
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(b) uniform outliers v. benchmark DFM

Note: This plot shows the realizations and pseudo real-time nowcasts of French GDP for 2019.9 – 2020.12
constructed from the two models, the one with outliers(in blue) and the benchmark DFM model (in red).
The black line represents the actual realizations of GDP growth, and the blue and red solid lines and
shaded areas denote the posterior median and 68% bands, respectively. OECD recessions in gray.

which is a sensible timing given the publication delay. They assign troughs in April and

May 2020, respectively, and correctly capture the realization at the second quarter of

2020. The timing of rebound is also consistent with the actual monthly data during this

period. Moreover, while the benchmark model reverts to the trend too early, the outlier-

augmented models adjust the timing of slowdown to have the actual growth at the third

quarter in the ballpark.

In conjunction with the preceding section, I assess the precision of point and density

forecasts across various models in comparison to the benchmark in Table 4. Just as in
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Table 4: Out-of-sample performance, full

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: relative RMSE RMSE

-5 month 1.206 1.899 1.916 1.328 1.040 2.766
-4 month 2.452 1.595 2.342 2.320 1.684 2.722
-3 month 0.682 0.733 1.633 0.956 1.014 2.827

-2 month 0.483 2.027 4.375 0.635 1.199 2.214
-1 month 1.731 1.103 2.162 1.632 1.025 2.133
0 month (end of reference Q) 0.558 0.562 2.324 0.572 2.002 1.626

1 month 0.423 0.570 1.689 0.785 1.451 1.930

(b) density forecasting: relative CRPS CRPS

-5 month 1.092 1.220 1.252 1.181 1.005 0.835
-4 month 1.629 1.196 1.610 1.482 1.187 0.804
-3 month 0.822 0.792 1.197 0.932 1.014 0.785

-2 month 0.590 1.248 2.327 0.726 1.145 0.673
-1 month 1.187 0.804 1.553 1.301 1.015 0.648
0 month (end of reference Q) 0.662 0.672 1.570 0.691 1.503 0.557

1 month 0.530 0.616 1.236 0.828 1.228 0.643

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the
student-t and uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-Diaz
et al., 2017), compare to the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are the
latter two models with the outliers, which are defined as the observations five-interquartile range away from the median,
replaced by missing values. Using data going back to 1980, I estimate the model at each point in time for 2005.1 –
2022.9 in an expanding window.

the pre-COVID case, improvements are particularly noticeable in the nowcasting horizon

for both point and density forecasting. At the end of the reference quarter, it is evident

that the SV model with t-distributed outliers outperforms the benchmark and other SV

specifications in point and density nowcasts.

Interestingly, the results indicate that the advantages of outlier-augmented models

in nowcasting become even more pronounced when the post-COVID sample is included.

For instance, the SV model with uniform outliers improves the RMSE of the benchmark

specification by 44%, which is more than a threefold increase compared to the 13%

improvement observed in the pre-COVID case. The difference in CRPS between the

student-t approach and the basic DFM amounts to 0.34, whereas it was only 0.17 in the

pre-COVID samples. The improvements over other SV specifications have also expanded.

During the pandemic, outlier-augmented models clearly distinguish between short-term

and long-lasting increases in uncertainty, an advantage over other models. In contrast

to the pre-COVID case, the t-distribution method outperforms the uniform approach for

both point and density forecasting. However, the uniform approach still demonstrates
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comparable capability, dominating models without outliers by a wide margin. The ability

of outlier-augmented models to capture extreme events appears particularly advantageous

during uncertain times.

In contrast to the pre-COVID case presented in Table 3, models with outliers no longer

possess superiority over the benchmark in longer forecasting horizons. This outcome is not

surprising, given that the emergence of COVID-19 represented a wholly unexpected event

from an economic perspective. Still, when considering the log score as a measure of dens-

ity forecasting accuracy, as illustrated in Appendix C.1, models incorporating outliers,

regardless of their distributional assumptions, consistently generate more precise density

forecasts compared to the standard model across all forecasting horizons. In summary,

the findings suggest that explicitly modeling outliers significantly enhances forecasting

performance, particularly in nowcasting horizons and in terms of density forecasting for

both pre and post-COVID datasets.

5 Extension: a hybrid model

So far, we have demonstrated that the outlier-augmented model consistently outper-

forms conventional models in terms of forecasting accuracy, particularly during periods

of heightened uncertainty. While I have also compared the performance across two dif-

ferent outlier models, it may be too restrictive to assume that outliers follow a single

distribution. Therefore, I propose a modest extension that accommodates multiple types

of outliers simultaneously.

We have introduced outliers multiplicatively within a stochastic volatility (SV) frame-

work, considering two cases where outliers follow either a t-distribution or a uniform

mixture distribution. As shown in Section 3, the t-distribution generates frequent small-

to-medium outliers, while the uniform mixture model captures rare but large outliers.

The distinct outcomes arise from the distributional properties: the heavy tails of the

t-distribution capture more frequent moderate deviations from the mean, leading the

model to identify a higher number of outliers. Although the tails are heavy, they are

not infinite, which limits the most extreme values and results mostly in small-to-medium

outliers. In contrast, the uniform mixture model assumes outliers are rare but large,

resulting in more conservative forecasts with fewer extreme values.
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This does not imply the superiority of a specific model– rather, each has its drawbacks.

The uniform mixture approach relies heavily on the prior specification of the outlier

probability pi. When miscalibrated, it may fail to detect true outliers or misclassify

regular observations. Moreover, this model may overlook the more nuanced variability

that the continuous distribution captures. On the other hand, while the t-distribution

is more flexible, it also introduces greater unpredictability by over-identifying moderate

outliers, potentially obscuring true rare events.

Since no single model is clearly dominant, I propose an approach that accommodates

both types of outliers. Previously, I demonstrated that the t-distribution tends to gener-

ate small to medium-sized outliers more frequently, while the uniform mixture captures

rare but large outliers. In reality, both types of outliers—small, frequent deviations and

large, rare shocks—may coexist. Therefore, instead of relying on a single distributional

assumption, I propose a ‘hybrid’ model, such that:

(1− ρi(L))uit = σηito
med
it obigit ηit, ηit ∼ N(0, 1) (14)

where each of omed
it obigit follows the t-distribution, i.e. νi/oi,t ∼ χ2

νi
, and uniform mixture

distribution described in the Eq(7), respectively. To assess whether this hybrid model

improves forecasting performance, I repeat the out-of-sample exercises from Section 4

and compare the results to competing models.

Table 5 compares the relative accuracy of point and density forecasts across six models,

on top of the hybrid model presented in the first column. As shown in the top panel, there

is little to no improvement in forecasting accuracy for both point and density forecasts,

for the pre-COVID sample. In terms of point forecasts, there is no comparative gain

over other models across any horizon, and in fact, the hybrid model performs the worst

among the first five models, excluding the basic DFMs. Specifically, at the 2- and 5-month

horizons, its performance is even worse than the benchmark DFM.

The density forecasting results tell a slightly different story. While the hybrid model

still underperforms the more advanced models at the one-quarter horizon, it shows modest

improvement for the one-month-ahead forecasts, where it outperforms all other models.

However, these gains are minimal. The conclusion from the pre-COVID sample is that,

because the data predominantly consists of stable periods, the added estimation uncer-

tainty from incorporating a second type of outlier outweighs the potential benefits of
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Table 5: Out-of-sample performance, with the hybrid model

Horizon/model t+uniform Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: relative RMSE RMSE

-5 month 1.015 0.986 0.951 0.949 0.952 0.998 0.484
-4 month 0.973 0.961 0.957 0.950 0.953 0.999 0.459
-3 month 0.958 0.959 0.928 0.935 0.929 1.001 0.422

-2 month 1.000 0.945 0.879 0.877 0.880 0.996 0.374
-1 month 0.895 0.881 0.877 0.877 0.876 0.993 0.347
0 month (end of reference Q) 0.905 0.900 0.873 0.873 0.874 0.995 0.340

1 month 0.889 0.899 0.865 0.872 0.866 0.987 0.338

(b) density forecasting: relative CRPS CRPS

-5 month 1.009 0.987 0.946 0.945 0.950 0.994 0.268
-4 month 0.971 0.962 0.955 0.952 0.952 1.002 0.259
-3 month 0.955 0.948 0.922 0.931 0.925 1.002 0.249

-2 month 0.922 0.883 0.850 0.850 0.853 1.000 0.235
-1 month 0.800 0.802 0.829 0.830 0.829 1.002 0.233
0 month (end of reference Q) 0.816 0.818 0.826 0.829 0.832 1.001 0.234

1 month 0.806 0.822 0.817 0.827 0.822 0.988 0.233

(a) Pre-COVID

Horizon/model t+uniform Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: relative RMSE RMSE

-5 month 1.046 1.206 1.899 1.916 1.328 1.040 2.766
-4 month 1.251 2.452 1.595 2.342 2.320 1.684 2.722
-3 month 0.564 0.682 0.733 1.633 0.956 1.014 2.827

-2 month 0.421 0.483 2.027 4.375 0.635 1.199 2.214
-1 month 0.967 1.731 1.103 2.162 1.632 1.025 2.133
0 month (end of reference Q) 0.435 0.558 0.562 2.324 0.572 2.002 1.626

1 month 0.404 0.423 0.570 1.689 0.785 1.451 1.930

(b) density forecasting: relative CRPS CRPS

-5 month 1.002 1.092 1.220 1.252 1.181 1.005 0.835
-4 month 1.051 1.629 1.196 1.610 1.482 1.187 0.804
-3 month 0.768 0.822 0.792 1.197 0.932 1.014 0.785

-2 month 0.582 0.590 1.248 2.327 0.726 1.145 0.673
-1 month 0.758 1.187 0.804 1.553 1.301 1.015 0.648
0 month (end of reference Q) 0.574 0.662 0.672 1.570 0.691 1.503 0.557

1 month 0.514 0.530 0.616 1.236 0.828 1.228 0.643

(b) Full sample

Note: This table provides the forecasting performance of different models: the DFM model with both student-t and uniform mixture
outliers; the model with outliers following the student-t and uniform mixture distribution, respectively; the model with stochastic
trend and volatility (Antolin-Diaz et al., 2017), compare to the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and
‘Basic miss’ are the latter two models with the outliers, which are defined as the observations five-interquartile range away from the
median, replaced by missing values. Using data going back to 1980, I estimate the model at each point in time for 2005.1 – 2019.9
for the top and 2022.9 for the bottom panel, respectively, in an expanding window.

correcting model misspecification.

The situation reverses when the COVID-19 period is included, as illustrated in the

bottom panel of Table 5. The hybrid model now outperforms all others at nearly all

forecasting horizons, except for the two longest ones. The improvements are notable: at

the nowcasting horizon, the hybrid model delivers more than a 56% and 43% gain in

point and density forecasting accuracy, respectively, compared to the benchmark model.
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It achieves more than a 12% improvement in point forecasts over the t-distribution model,

which had previously shown the best performance.

Indeed, such a reversal is anticipated rather than unexpected. The COVID period can

be characterized by the increased economic volatility where both small, frequent shocks

and large, rare shocks occurring simultaneously. The hybrid model, which accommodates

both t-distributed (moderate) and uniform-distributed (large) outliers, is particularly

well-suited to capture the complexities of this environment. By incorporating both types

of outliers, the model is able to more accurately represent the distribution of shocks,

leading to improved forecasting performance. In contrast, models relying solely on t-

distributed or uniform-distributed outliers are less capable of capturing the full range of

dynamics during the COVID-19. The reduction in misspecification outweighs the added

estimation uncertainty introduced by the hybrid approach, in turbulent times.

How does such a better forecasting performance translates into nowcasting? Figure

9 shows the pseudo-real time nowcasts of French GDP from the third quarter of 2019 to

the same quarter of 2022 with the ex-post realizations (in black). When compared to

the previous outlier-augmented models, the nowcasts from the hybrid model (in blue) are

better in two aspects. First, it produces better point nowcasts, especially in the longer

horizon. While the hybrid model captures the actual real GDP in the second, third, and

fourth quarter of 2020, nowcasts from the uniform mixture model (in red) in the bottom

panel of Figure 9 misses the actual value in the third quarter. The t-distribution model

(in red) in the top panel also gets the actual real GDP in the second and third quarter

of 2020 correctly, it slightly misses the actual value in 2020 Q4. Moreover, the nowcasts

from the hybrid model also works pretty well for one and two month ahead nowcasts,

which is a longer horizon. There is less swings in the middle, for instance one-month

ahead nowcasts made in May and August 2020, for the second and third quarter real gdp

growth, respectively.

How does this improved forecasting performance translate into the nowcasts for 2020?

Figure 9 presents the pseudo-real-time nowcasts of French GDP from the third quarter of

2019 to the end of 2022, alongside the ex-post realisations (in black). Compared to the

previous outlier-augmented models, the nowcasts from the hybrid model (in blue) show

improvements in two aspects. First, the hybrid model produces more accurate point

nowcasts, particularly over longer horizons. For instance, the hybrid model accurately
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Figure 9: Hybrid v. outlier models: nowcasts of French GDP, 2020
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(a) Hybrid model v. student-t outliers
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(b) Hybrid model v. uniform outliers

Note: This plot shows the realizations and pseudo real-time nowcasts of French GDP for 2019.9 – 2020.12
constructed from the two models, the hybrid model(in blue) and the model with t-distributed or uniform
outliers (in red). The black line represents the actual realizations of GDP growth, and the blue and red
solid lines and shaded areas denote the posterior median and 68% bands, respectively. OECD recessions
in gray.

captures real GDP in the second, third, and fourth quarters of 2020, whereas the nowcasts

from the uniform mixture model (in red), shown in the bottom panel, miss the actual

value for the third quarter. Although the t-distribution model (in red in the top panel)

correctly captures real GDP in the 2020 Q2 and Q3, it slightly underestimates the actual

value in the fourth quarter. Additionally, the hybrid model performs well for nowcasts

made at longer horizons, one and two months ahead. There are fewer fluctuations in the

middle of the year: one-month-ahead nowcasts for 2020 Q2 and Q3, made in May and
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August respectively, illustrate more stability.

Second, the hybrid model demonstrates more accurate density forecasts. It effectively

captures the period of heightened uncertainty during the early phase of the pandemic

and the summer resurgence, when the number of COVID-19 cases increased again. Since

this uncertainty is related to COVID-19, it manifests in the early phase of the pandemic

but dissipates quickly by the summer 2020. A similar pattern is observed in winter:

while concerns were high, the economic impact was turned out to be less severe. Thus, a

moderate rise in uncertainty in October followed by stabilisation reflects the reality.

In contrast, the t-distribution model (in red, top panel), which only partially accounts

for large outliers, tends to produce overly persistent volatility when large movements

take place in the data. This is reflected in more prolonged swings in summer and winter

2020, leading to larger upward and downward deviations in nowcasts made mid-quarter.

Moreover, it fails to capture the significant rise in uncertainty during the 2020 Q2, which

is less realistic given that policymakers and markets at the time were focused on increasing

uncertainty in the economic outlook. The uniform mixture model, in the bottom panel,

better captures the evolution of economic uncertainty compared to the t-distribution

model and more in line with the hybrid model. Still, it generally overestimates the

degree of uncertainty, as indicated by overly wide confidence intervals. Overall, the

hybrid model provides a closer representation of actual developments in both point and

density forecasting during this uncertain times.

In sum, the significant improvement in performance of the hybrid model during the

COVID-19 stems from its ability to capture both frequent moderate shocks and rare

large shocks, which characterized that time. The added complexity may turn into a

disadvantage during more stable periods, possibly causing overfitting and particularly

weaker performance in point forecasts.

6 Conclusion

This paper aims to advance the dynamic factor model framework in the presence of one-

off outliers in the data. While it is of particular interest during unprecedented times like

the COVID-19 pandemic, the occurrence of outliers is a common feature in macroeco-

nomic data. Moving beyond conventional data screening practices, I propose an explicit
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modeling of outliers without unintended biases present in comparable approaches. The

methodological contributions of this paper are twofold: firstly, it introduces the incor-

poration of fat tails and outliers multiplicatively into innovation volatility. Secondly, it

investigates two distinct approaches including the student-t and uniform mixture distrib-

uted outliers.

The results of applying these models to forecast the French economy before and after

the pandemic have yielded several key findings. First, the outlier-augmented models con-

sistently outperform the benchmark model, regardless of distributional assumptions, in

point and density forecasting. These enhancements were most pronounced in nowcast-

ing horizons, where models with outliers demonstrated superior performance, capturing

economic activity more accurately and in a more timely manner.

Secondly, the significance of incorporating outliers becomes more apparent during ma-

jor crises, such as the Great Recession and the COVID-19. Outlier-augmented models

distinctly differentiated between short-term and long-lasting spikes in uncertainty, effect-

ively capturing economic peaks and troughs with greater accuracy and timeliness. Finally,

when comparing two distinct methods to incorporate outliers, the uniform approach is

possibly a more robust choice over the commonly employed t-distribution models. The

former effectively targets only extreme variations, while the latter tends to overly sup-

press already smooth processes. Despite such drawbacks, the student-t method also offers

some benefits in terms of forecasting, leaving the choice to be made based on the data

research objectives.
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A Details on the estimation of the model

A.1 The state space system

Let yt denote n × 1 vector of macroeconomic indicators. While it includes nQ quarterly and nM

monthly variables, I employ the interpolated monthly values yQ,M
t for the quarterly indicators

as described in Section 2.4. So I specify in the model that the time index t is always monthly for

all variables. The number of lags in the autoregressive coefficients of factors and idiosyncratic

components is set to 2, i.e. p = q = 2. Since the idiosyncratic components in the model feature

autocorrelation, the state space is rewritten in terms of quasi-differences:

ỹt = Λ̃Ft + η̃t, η̃t ∼ N(0, Rt)

Ft = AFt−1 + et, et ∼ N(0, Qt)

where the observables are defined as:

ỹt =



yQ,M
1,t − ρ1,1y

Q,M
1,t−1 − ρ1,2y

Q,M
1,t−2

...

yQ,M
nQ,t − ρnQ,1y

Q,M
nQ,t−1 − ρnQ,2y

Q,M
nQ,t−2

yM1,t − ρnQ+1,1y
M
1,t−1 − ρnQ+1,2y

M
1,t−2

...

yMnM ,t − ρn,1y
M
nM ,t−1 − ρn,2y

M
nM ,t−2


and the state vector Ft = [at at−1 at−2 ft ft−1 ft−2]’. As we extract the trend and factor,

the factor loadings consist of two blocks, Λ̃ = [Λa Λf ], which are respectively defined as the

following:

Λa =


1 − ρ1,1 − ρ1,2

1 − ρ2,1 − ρ2,2

bc − bcρ3,1 − bcρ3,2

0(n−3)×3

 , Λf =


1 − ρ1,1 − ρ1,2

Λ2 − Λ2ρ2,1 − Λ2ρ2,2
...

...
...

Λn − Λnρ2,1 − Λnρn,2


where bc loads on the consumption. The matrix of autocorrelation coefficients A also consists

of two blocks, [F1; F2], which are defined as:

F1 =

 1 01×2

I2 02×1

 , F2 =

ϕ1 ϕ2 0

I2 02×1
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Finally, the innovations to the law of motion can be described as et = [va,t 02×1 ϵt 02×1]’,

which follows the normal distribution with mean zero and the covariance matrix Qt = diag(ω2
a,

01×2, σ
2
ϵ,t,01×2). The covariance matrix of the measurement equation Rt, is the diagonal matrix

with ω2
ηi,t, for i = 1...n.

46



A.2 The estimation algorithm

Let θ = {λ,Φ, ρ, ωa, ωϵ, ωη, p, α, β} be the underlying parameters of the model, and Φ, ρ represent

the autoregressive coefficients for the factor and idiosyncratic components.22 The latent states

to be estimated are {at, ft, σϵ,t, σηi,t, oit}Tt=1. All variables are standardized, and the superscript

j denotes a current draw. The algorithm consists of the following steps.

Initialization

The model parameters are initialized at the arbitrary starting values for the parameters

and the stochastic volatilities, θ0 and {σ0ϵ,t, σ0ηi,t, o0it}Tt=1. Specifically, I set λ = 1, Φ = ρ = 0,

ωa = ωϵ = ωη = 10−5, p = 0.1. I set α and β to reflect stylized facts observed by Stock and

Watson (2016) that the outlier occurs once every four years in the 10 years of the pre-sample.

I also select σϵ,t = 0.1, σηi,t = 1 and oit = 1 for the latent states. Set j = 1.

1. Construct monthly-interpolated values for quarterly variables

For the quarterly variables i = 1...nQ, compute ∆yQit − cit − λi(L)ft, given a
j−1
t , f j−1

t , λj−1

from the previous iteration. Then, using the state space in Eq (12) and (13) and conditional

on ρj−1, {σj−1
ηi,t }Tt=1, draw ûMi,t by employing the Kalman filter and smoother. Following Bai

and Wang (2015), I initialize the filter from a normal distribution, i.e. x0 ∼ N(0, 104I5), and

the covariance matrix of the measurement equation Rt is set to 10−4. Then we obtain the

monthly-interpolated values, ∆yM,Q
it = cit + λi(L)ft + ûMi,t . When j = 1, I interpolate quarterly

variables based on the cubic splines using the MATLAB command interp1. In the case of the

out-of-sample analysis, the unknown values are set to NaN.

2. Draw the latent factors and autoregressive coefficients

Based on the previous draws of ϕj−1,Λj−1, ρj−1, ωj−1
a , {σj−1

ϵ,t , σ
j−1
ηi,t }Tt=1, construct the state

space in the quasi-differences as shown in Appendix A.1. Also apply the quasi-differencing to

the monthly and monthly-interpolated quarterly indicators obtained from the previous step.

Draw the factor and the trend, p({ajt , f
j
t }Tt=1|θj−1, {σj−1

ϵ,t , σ
j−1
ηi,t }Tt=1, y) using the Kalman filter

and smoother, which are initialized from a normal distribution, i.e. x0 ∼ N(0, 104I). Then,

conditional on the new draws of {ajt}Tt=1, obtain vja,t using Eq (4). Draw the variance of the

time-varying GDP growth component, p(ω2,j
a |{ajt}Tt=1), from the Inverse-Gamma (IG) posterior

with the prior of one degree of freedom and the scale of 0.001.

Given {f jt }Tt=1 from the previous step, draw the autoregressive parameters of the factor

22These are the parameters of the model where outliers follow the piecewise-uniform distribution. In
the case of the student-t distributed outliers, we estimate parameters ν instead of {p, α, β}.
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VAR, Φj from the Normal-Inverse Wishart posterior p(Φj |{f jt , {σ
j−1
ϵ,t }Tt=1). Specifically, I run

the standard Bayesian VAR routine with the Minnesota-style priors described in Section 2.3

and p = 2. Then, using the residuals from the BVAR, run the Kalman filter and smoother and

use the mixture of normals following Kim et al. (1998) to draw the SV component of innovation

to the factors, p({σjϵ,t}Tt=1|Φ, {ft}Tt=1). Finally, draw ω2,j
ϵ conditional on {σjϵ,t}Tt=1 and from IG

posterior with the prior of the one degree of freedom and the scale of 10−4.

3. Draw the factor loadings and serial correlation coefficients of idiosyncratic

components

Draw the loadings λj from p(λj |ρj−1, {f jt , σ
j−1
ηi,t }Tt=1, y). They can be estimated via GLS,

conditional on ρij − 1 and σj−1
ηi,t . To be more specific, for each variable i = 1...n, I first divide the

indicator (monthly or monthly-interpolated quarterly) and the factor {f jt }Tt=1 by the volatility

of the idiosyncratic component from the previous draw, {σj−1
ηi,t }Tt=1. Then I also apply quasi-

differencing to the resulting indicator and factor. After these steps, I stack all the indicators

and factors and run the standard OLS: for the prior on λj , I set the mean and variance as the

matrix of ones and 0.2, respectively. Finally, I correct the estimated loadings λj to reflect the

restriction that the loading of GDP on ft to be unity, following Bai and Wang (2015).

Having obtained λj and {ajt , f
j
t }Tt=1, calculate the idiosyncratic components ujit = ∆yit−cit−

λi(L)ft. Draw serial correlation coefficients ρj from p(ρ|λj , {f jt , σ
j−1
ηi,t }Tt=1, y) in a similar way to

the above, i.e. for each variable i = 1...n, first divide ujit by the volatility of the idiosyncratic

component from the previous draw, {σj−1
ηi,t }Tt=1. Then estimate Eq (3) via OLS. I set the prior

mean and the variance of ρji as the vector of zeros and 0.2 with the lag decay of 2. In the case

of explosive roots, I discard the draw and repeat this step.

4. Draw the SV of innovations and the outlier states.

For each variable i = 1...n, I obtain the residuals u∗,ji,t = (1− ρj(L))uji,t. Then,

(in the case of the uniform mixture distribution) conditional on {σj−1
ηi,t , o

j−1
i,t , u∗,ji,t }Tt=1 in log terms,

obtain the mixture states. Then obtain the new draws of {σjηi,t}Tt=1 using the Kalman filter and

smoother, where we construct the observations by subtracting the mean of the mixture states

and log(oj−1
i,t ) from the log(u∗,ji,t ). I initialize the filter from x0 ∼ N(0, 10I), with the transition

matrix and the loadings set to the Identity. The covariance matrices for the state and meas-

urement equations consist of ω2,j−1
ηi and the volatility of the mixture states, respectively. Then

draw p(oji,t|u∗i,t, σ
j
ηi,t) based on the cdf of standardized draws for each component of mixture

normals and calculate the number of outliers to update αi, βi. Finally, draw pji from the beta

(αi, βi) posterior. The entire step can be parallelized and run in a univariate state-space system.
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(in the case of the student-t distribution) conditional on {σj−1
ηi,t , o

j−1
i,t , u∗,ji,t }Tt=1 in log terms,

update the posterior distribution of the νi, which is proportional to the product of t-distribution

ordinates, i.e. p(νji |u∗i,t, σ
j−1
ηi,t ) = p(ν)ΠT

t=1
νν/2Γ((ν+1)/2)
Γ(1/2)Γ(ν/2) (ν+(u∗,ji,t /σ

j−1
ηi,t )

2)−(ν+1)/2, following Jac-

quier et al. (2004). I impose a weakly informative prior, i.e. p(ν) ∼ Γ(2, 10) which is discretized

on the support [3:40], to ensure the existence of a conditional variance at the lower bound. Then

I draw p(oji,t|νj , u∗i,t, σ
j−1
ηi,t ), using ν

j/oji,t ∼ χ2
v+1. After this step, I follow the same process as in

the previous case of the uniform mixture distribution, to update {σjηi,t}Tt=1 using the Kalman

filter and smoother, where we construct the observations by subtracting the mean of the mix-

ture states and log(oj−1
i,t ) from the log(u∗,ji,t ).

Then, in both cases, draw p(ω2,j
ηi |{σ

j
ηi,t}Tt=1) from the IG posterior with the prior of the one

degree of freedom and the scale of 10−4.

Increase j by 1 and repeat the steps above until j = 7000. After discarding the first

2000 as burn-in draws, use the rest 5000 draws of the model parameters and latent variables

for the inference.

49



A.3 The unwanted dependency

Antolin-Diaz et al. (2023) model the outliers in an additive rather than multiplicative way, with

the following measurement equation:

∆yt − ot = ct + Λ(L)ft + ut, oit ∼ tvi(0, σ
2
oi)

where ∆yt is the transformed data, which can be in levels or differences, and so is ot. By

re-arranging and quasi-differencing (1−ρi(L))uit = σηitoitηit with the lag order of 2, we obtain:

ỹt = Λ̃Ft + (1− ρ1L− ρ2L
2)(ut + ot)

where ỹt and Λ̃Ft are in terms of the quasi-differences, e.g. ỹt = (1 − ρ1L − ρ2L
2)∆yt, as

shown in the state-space representation in Appendix A.1. Then, the variance of residuals, the

last term on the right-hand side, can be expressed as:

V [(1− ρ1L− ρ2L
2)(uit + oit)] = V (σηitηit + (1− ρ1L− ρ2L

2)oit)

= σ2ηit + (1 + ρ21 + ρ22)V (oit)

where the first equality reflects (1−ρi(L))uit = σηitoitηit, and the second line is based on the

two extra assumptions (1) – (2): uit and oit are uncorrelated and oit are serially uncorrelated.

These are mostly innocuous by the definition of “one-off” outliers. Then, the role of outlier

depends on ρ, the autoregressive coefficients of the idiosyncratic component uit, not the outlier

states oit. This is not an intended feature of the model, hence the ‘unwanted’ dependency.

In the likely case of ρ > 0, it amplifies the variance of the outlier component, resulting in an

underestimation of the SV components in innovations. We can calculate further to obtain the

variance of outlier components:

V (oit) = V (
√
ψitzit)

= V [E(
√
ψitzit|ψit)] + E[V (

√
ψitzit|ψit)]

= V [
√
ψitE(zit|ψit)︸ ︷︷ ︸

=0

] + E[ψit V (zit|ψit)︸ ︷︷ ︸
=σ2

oi

]

= σ2oiE(ψit)

where we apply the specification of outliers from Antolin-Diaz et al. (2023), i.e. the latent

scale mixture variable ψit follows νi/ψit ∼ χ2
νi , and the noise zit ∼ N(0, σ2oi), so that oit =

√
ψitzit ∼ tνi(0, σ

2
oi). Since νi/ψit ∼ χ2

νi implies that ψit/νi ∼ IG(νi2 ,
1
2), we can complete the
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above expression by:

E(
ψit

νi
) =

1

νi − 2
, E(ψit) =

νi
νi − 2

We can reach the same expression for V (oit) by both additive and multiplicative modeling

of outliers. However, when the quasi-differencing is applied, the dependeny issue only arises in

the former case.
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B Additional figures

B.1 Posterior estimate of trend and factor volatility

Figure B.1: Posterior estimate of trend v. Real GDP growth
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Note: This plot shows the posterior estimate of the long-run growth from the model with outliers following
the uniform mixture distribution (in red and blue) and the real GDP growth of France in the black solid
line. The solid red and blue lines denote the posterior median and 68% bands, respectively, while the
dotted blue line represents 90% bands. Sample: 1980.1 – 2019.9. OECD recessions in gray.
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Figure B.2: Volatility of the common activity factor
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(a) student-t outliers v. no outlier
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(b) uniform mixture outliers v. no outlier

Note: This plot shows the posterior estimate of volatility of the common activity factor from the two
models, the one with (in blue) and the one without (in red) outliers. The solid lines and shaded areas
denote the posterior median and 90% bands, respectively. Sample: 1980.1 – 2019.9. OECD recessions
in gray.
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B.2 Stochastic volatility: with v. without outliers

Figure B.3: SV estimates: student-t v. without outliers, monthly hard
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Note: This plot shows the posterior estimate of stochastic volatility in innovations to the idiosyncratic
components of monthly hard indicators. The black line represents the posterior median from the model
without outliers. Red and blue lines are the posterior median and 68% bands from the model with
outliers following the t-distribution, respectively. Sample: 1980.1 – 2019.9. OECD recessions in gray.
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Figure B.4: SV estimates: student-t v. without, quarterly and soft

Real GDP
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Note: This plot shows the posterior estimate of stochastic volatility in innovations to the idiosyncratic
components of quarterly and monthly soft indicators. The black line represents the posterior median
from the model without outliers. Red and blue lines are the posterior median and 68% bands from the
model with outliers following the t-distribution, respectively. Sample: 1980.1 – 2019.9. OECD recessions
in gray.
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Figure B.5: SV estimates: uniform mixture v. without, monthly hard
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Note: This plot shows the posterior estimate of stochastic volatility in innovations to the idiosyncratic
components of monthly hard indicators. The black line represents the posterior median from the model
without outliers. Red and blue lines are the posterior median and 68% bands from the model with outliers
following the uniform mixture distribution, respectively. Sample: 1980.1 – 2019.9. OECD recessions in
gray.
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Figure B.6: SV estimates: uniform mixture v. without, quarterly and
soft

Real GDP
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Note: This plot shows the posterior estimate of stochastic volatility in innovations to the idiosyncratic
components of quarterly and monthly soft indicators. The black line represents the posterior median
from the model without outliers. Red and blue lines are the posterior median and 68% bands from the
model with outliers following the uniform mixture distribution, respectively. Sample: 1980.1 – 2019.9.
OECD recessions in gray.
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B.3 Posterior estimates of outlier states

Figure B.7: Posterior probabilities of outlier states: t-distribution

Note: The stacked bars represent posterior probabilities for realizations of outlier states that are larger
than two. The blue bars correspond to the probability that the outliers are within the range between
two and five, and the orange bars denote the probability of outlier states that are larger than five to take
place. Monthly and quarterly hard indicators in the dataset are included. Sample: 1980.1 – 2019.9.
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Figure B.8: Posterior probabilities of outlier states: uniform mixture

Note: The stacked bars represent posterior probabilities for realizations of outlier states that are larger
than two. The blue bars correspond to the probability that the outliers are within the range between
two and five, and the orange bars denote the probability of outlier states that are larger than five to take
place. Monthly and quarterly hard indicators in the dataset are included. Sample: 1980.1 – 2019.9.
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Figure B.9: Posterior median of outlier states: t-distribution

Note: This plot shows the posterior median estimates of outlier states for selected monthly and quarterly
hard indicators in the dataset. Sample: 1980.1 – 2019.9.
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Figure B.10: Posterior median of outlier states: uniform mixture

Note: This plot shows the posterior median estimates of outlier states for selected monthly and quarterly
hard indicators in the dataset. Sample: 1980.1 – 2019.9.
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C Additional tables

C.1 Out-of-sample point forecasting evaluation

Table C.1: Out-of-sample point forecasting evaluation, pre-COVID

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: RMSE

-5 month 0.4774 0.4607 0.4598 0.4612 0.4835 0.484
-4 month 0.4407 0.4392 0.4359 0.4374 0.4583 0.459
-3 month 0.4052 0.3920 0.3951 0.3922 0.4230 0.422

-2 month 0.3533 0.3287 0.3278 0.3290 0.3725 0.374
-1 month 0.3054 0.3039 0.3041 0.3037 0.3443 0.347
0 month (end of reference Q) 0.3061 0.2969 0.2970 0.2974 0.3383 0.340

1 month 0.3036 0.2924 0.2948 0.2927 0.3336 0.338

(b) point forecasting: MAFE

-5 month 0.3651 0.3467 0.3438 0.3458 0.3391 0.3402
-4 month 0.3394 0.3274 0.3270 0.3271 0.3281 0.3302
-3 month 0.3219 0.2982 0.2997 0.2983 0.3054 0.3050

-2 month 0.2803 0.2542 0.2532 0.2531 0.2749 0.2742
-1 month 0.2464 0.2431 0.2423 0.2422 0.2632 0.2633
0 month (end of reference Q) 0.2566 0.2378 0.2389 0.2396 0.2592 0.2596

1 month 0.2491 0.2337 0.2364 0.2347 0.2552 0.2577

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the student-t
and the uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-Diaz et al., 2017);
and the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are the latter two models with the outliers,
which are defined as the observations five-interquartile range away from the median, replaced by missing values. Using data
going back to 1980, I estimate the model at each point in time for 2005.1 – 2019.9 in an expanding window.
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Table C.2: Out-of-sample density forecasting evaluation, pre-COVID

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) density forecasting: log score

-5 month -0.826 -0.853 -0.871 -0.887 -2.245 -2.176
-4 month -0.792 -0.983 -0.987 -0.994 -2.695 -2.332
-3 month -0.804 -1.181 -1.227 -1.233 -3.561 -3.988

-2 month -0.774 -1.604 -1.694 -1.715 -7.750 -8.319
-1 month -1.011 -2.452 -2.534 -2.506 -15.319 -15.209
0 month (end of reference Q) -1.102 -2.907 -2.983 -3.032 -23.034 -21.222

1 month -1.448 -2.988 -3.090 -3.018 -22.273 -23.052

(b) density forecasting: CRPS

-5 month 0.2643 0.2534 0.2530 0.2544 0.2660 0.2677
-4 month 0.2486 0.2468 0.2461 0.2462 0.2591 0.2585
-3 month 0.2362 0.2296 0.2319 0.2304 0.2497 0.2492

-2 month 0.2075 0.1998 0.1996 0.2003 0.2348 0.2349
-1 month 0.1870 0.1933 0.1935 0.1934 0.2338 0.2332
0 month (end of reference Q) 0.1914 0.1932 0.1939 0.1946 0.2341 0.2339

1 month 0.1913 0.1901 0.1925 0.1912 0.2300 0.2327

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the student-t
and the uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-Diaz et al., 2017);
and the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are the latter two models with the outliers,
which are defined as the observations five-interquartile range away from the median, replaced by missing values. Using data
going back to 1980, I estimate the model at each point in time for 2005.1 – 2019.9 in an expanding window. The asterisks are
related to the p-value of the null hypothesis that the basic DFM model performs as well as others, against the alternative that
the other model performs better, based on the test statistic of Diebold and Mariano (1995). *** is significant at the 1% level,
** at the 5% level, and * at the 10% level.
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Table C.3: Out-of-sample point forecasting evaluation, full sample

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) point forecasting: RMSE

-5 month 3.3347 5.2520 5.2986 3.6733 2.8766 2.766
-4 month 6.6743 4.3425 6.3752 6.3158 4.5847 2.722
-3 month 1.9276 2.0719 4.6172 2.7033 2.8664 2.827

-2 month 1.0688 4.4881 9.6858 1.4062 2.6536 2.214
-1 month 3.6929 2.3537 4.6124 3.4823 2.1873 2.133
0 month (end of reference Q) 0.9078 0.9130 3.7779 0.9293 3.2543 1.626

1 month 0.8157 1.0999 3.2592 1.5153 2.7994 1.930

(b) point forecasting: MAFE

-5 month 1.0806 1.3226 1.3501 1.1407 0.8873 0.9244
-4 month 1.6074 1.2093 1.4959 1.3530 1.1311 0.9075
-3 month 0.7929 0.8089 1.1182 0.8786 0.8486 0.8480

-2 month 0.5057 1.0224 1.8311 0.5804 0.8212 0.7292
-1 month 0.9206 0.6419 1.1349 0.9448 0.7278 0.6950
0 month (end of reference Q) 0.4567 0.4647 0.9741 0.4729 0.8791 0.6024

1 month 0.4453 0.4854 0.8828 0.6015 0.8268 0.6783

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the student-t
and the uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-Diaz et al., 2017);
and the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are the latter two models with the outliers,
which are defined as the observations five-interquartile range away from the median, replaced by missing values. Using data
going back to 1980, I estimate the model at each point in time for 2005.1 – 2022.9 in an expanding window.

Table C.4: Out-of-sample density forecasting evaluation, full sample

Horizon/model Full (t-dist) Full (uniform) SV miss SV Basic miss Basic DFM

(a) density forecasting: log score

-5 month -21.463 -28.105 -30.715 -29.218 -65.136 -244.853
-4 month -24.854 -37.859 -38.779 -38.305 -100.828 -462.350
-3 month -5.565 -8.832 -8.653 -8.866 -53.639 -318.273

-2 month -8.049 -16.548 -17.443 -17.694 -79.132 -559.888
-1 month -12.247 -23.190 -26.051 -28.649 -190.255 -871.559
0 month (end of reference Q) -4.454 -6.801 -8.377 -6.449 -134.327 -367.203

1 month -2.020 -3.642 -20.577 -12.662 -108.009 -419.691

(b) density forecasting: CRPS

-5 month 0.9115 1.0188 1.0450 0.9860 0.8390 0.835
-4 month 1.3096 0.9614 1.2940 1.1914 0.9540 0.804
-3 month 0.6457 0.6224 0.9400 0.7321 0.7966 0.785

-2 month 0.3972 0.8403 1.5662 0.4886 0.7708 0.673
-1 month 0.7695 0.5212 1.0064 0.8430 0.6578 0.648
0 month (end of reference Q) 0.3693 0.3745 0.8752 0.3850 0.8379 0.557

1 month 0.3408 0.3960 0.7950 0.5328 0.7903 0.643

Note: This table provides the forecasting performance of different models: the DFM model with outliers following the student-t
and the uniform mixture distribution, respectively; the model with stochastic trend and volatility (Antolin-Diaz et al., 2017);
and the basic DFM model (Bańbura and Modugno, 2014). ‘SV miss’ and ‘Basic miss’ are the latter two models with the outliers,
which are defined as the observations five-interquartile range away from the median, replaced by missing values. Using data
going back to 1980, I estimate the model at each point in time for 2005.1 – 2022.9 in an expanding window.
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